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This work was motivated by the problem of obtaining a smooth density func-
tion over a geographical region from data aggregated over irregular subregions.
Minimization of a family of roughness criteria given ’;olun;r'data lead to smooth
multivariate functions - Laplacian histosplines, having a certain order of the
iterated Laplacian of constant value in each of the subregions and satisfying
natural boundary conditions on the boundary of the region. For inexact data, e.qg.,
in case of estimating an underlying density given counts of events by subregions,
laplacian smoothing histosplines are constructed,analogous to smoothing splines
in the univariate case, and a method for choosing the smoothing parameter is

presented.
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» For both cases of exact and inexact data, modified roughness criteria, inde-
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pendent of the region, are discussed, and results known for point-evaluation data

are extended to the case of aggregated data.

N

AMS (MOS) Subject Classifications 41A63, 41Al15.

Key Words: Histosplines, Laplacian histosplines, Volume matching surfaces,
Bounded domains, Smoothing histosplines, Elliptic boundary value
problems, Iterated Laplacian, Aggregated data.
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SIGNIFICANCE AND EXPLANATION

» consider the problem of obtaining a smooth density function when only aggre-
jated data is available. For example, suppose that population census is given by

bureaucratic region (say, state) and it is desired to obtain a smooth function f(x,y)

P T R

: intended to be an estimate of the population density at location (x,y). We obtain

;
g the "smoothest" f such that the volume of f over each region coincides with the
% known population size in that region. Our measure of the roughness of f is
i 2 2 af af
L + = =
s I] e handy , £ o mg, £ =i
g or

E [f €2+ 2¢.2 + £ %)axay
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where the integral is taken over the region of interest. Some other roughness

measures are also considered. The solution f is characterized as the solution

to a certain boundary value problem. We then modify the roughness criteria by taking

2
&
*
g

the integral over the infinite plane. The solution to the modified problem can be
i displayed explicitly and a computable approximate solution is obtained.
% We also solve the problem of obtaining a smooth density when the data must be
E considered to be inexact, for example, when it is count data for some rare disease.

In this case one usually does not want the volumes of f over each region to

R

match the data exactly but to be near it. There is a parameter controlling a

bt Al

tradeoff between the smoothness of f and its deviation from the data, and we show

how to choose it.

We hope that these results provide a first step in the development of methodg
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for the construction of surfaces from aggregated data.

t

i
1
1

{
| By
|_piseritutton/ {
‘ 1anility Codes
Availend/or
Dist special

| i

The responsibility for the wordinag and views expressed in this descriptive summary
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ON THE ESTIMATION OF FUNCTIONS
OF SEVERAL VARIABLES FROM AGGREGATED DATA

L]
Nira Dyn and Grace Wahba

1. Introduction

The work in this paper is motivated by the following problem: Incidence
rates of certain types of cancer are known to vary geographically, for example,
persons living in areas with higher exposure to sunshine are more likely to get
skin cancer than those in more northerly regions. Data on population density
and disease occurrence is typically collected by bureaucratic subdivision. It
is desired, from this aggregate data, to obtain an estimate ﬁ(xl,xz) of the
probability p(xl.le that a person living at (xl.xz) will contract the
disease in a given year. Contour map representations of ﬁ can then be used
to visually look for geographic patterns in p, and for apparent correlations
with other geographically varying variables.

For concreteness, we consider data reported by state. Let { represent
the contiguous 48 states of the U.S., and Qi the ith state. 1If u(xl.xz) is
the population density at point (xl.xz) (we pretend this is well defined), then
the expected number of cases of our subject disease in state i is Yy

- [ p(xl.xz) u(xl.xz)dxldx2 .

'

The population si = f u(xl,xz)dxldxz of state i 1is assumed to be known

9y

exactly. The population of further subdivisions, e.g., counties, can also be
assumed to be known exactly. 1In a particular year the number z1 of cases

actually occurring in Q is reported. If p is very small, then z1 may be

i
modelled as a Poisson random variable with mean uye From this data it is desired

-
On sabbatical from Department of Mathematical Sciences, Tel-Aviv University, Israel.
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to estimate p(xl.xz). (xl,xz) ¢ 1. We will do this by first estimating u(xl.le
using only the population data {si). and then estimating q(xl,xz) E p(xx.xz)u(xl.le :
using the disease count data {zi)' The estimate of p is then the quotient of .
these two estimates. For notational convenience we suppose that population data is
aggregated at the same level (i.e. state) as the disease count data.

It is possible to obtain heuristically reasonable estimates of u and g by
assuming that they are “smooth” in some sense, namely by minimizing certain measures

of roughness. The roughness measures we will consider in most detail are defined by

2 2
1.1 .
( ) Jx(u) [ (ux + ux )dxldx2
9 % 2
or
2
(1.2) Iy = [ i +20d  sul )axax,
R by 2 2%2

We will also briefly consider the more general measures

S9SN o Ok :
(1.3) 3 (u) = f 3 "T"T-T-T) dx.dx, , m=1,2,3,%0 . .
0 i=0 axlaxz

First we consider the problem of estimating u. With the roughness measures
(1.1) and (1.2) our estimate G(xl.xz) of u(xl.xz) will be the solution to one
of the following:

Problems I-1/1-2: Find u ¢ X (an appropriate space of functions on Q)

to minimize Jl(u)ldztu) subject to the volume-matching constraints:

(1.4) [ [utx,y)axdy = 5., i = 1,2,°++,N ,

Q.
i

i'

N
where v Q1 = Q.
i=]

We obtain a characterization of the solution to a general problem of which Problems
I-1 and I-2 are special cases. This is

=
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Pr Llem I-4: Let Q be a smooth bounded subset of Rd, Euclidean d-space.

Find u ¢ H“(u) to minimize J(u) = A(u,u), where

B

A(u,v) = 5 f a p'u D'v dx

la},|8)=n 0 %P

subject to

J e ux)ax = s, i =1,2,00¢,N
Q - ¥ 1

Here Hm(ﬂ) is the Sobolev space of functions with mixed partial derivatives up

to order m in Lz(ﬂ), X = (xl.xz.---.xd). a = (al.°'-.ud). g = (Blo""Bd),

d d d % 3u
IG! - E a., Z a, = Z B, =m, Du = ——————2————: a are functions of x
bt N s {e1 i a, ay af
1 1 AN 3x ..lax
1 d

satisfying certain conditions specified in Section 2, and the (oi} are linearly

independent functions in Lz(ﬂ).

The characterization of the solution to Problem I-A is given in Section 2.
Certain further details are carried out in Section 3 for the special cases of

Problems I-1 and I-2. A simple example of Problem I-1 with concentric circles

_ as subdomains is worked out explicitly in Section 4.

Numerical algorithms for computing the solutions to Problems I-1 and I-2 will
appear in a separate paper.

The solutions to problems I-1, I-2 and I-A are not required to be non-negative,
although it is known, of course, that u(xl,xz) and g(xl.xz) are non-negative.
In this paper we sidestep the philosophical, theoretical and computational problems
of imposing non-negativity on the solution, and hope to address this problem
separately. The results of Lions and Stampacchia [12] will be relevant.

We know of a very short literature specifically on the volume matching problem.
(Although it is of course only a special case of the well studied problem of esti-

mating a function given the values of some linear functionals, see Golomb and

-




Weinberger (9], Kimeldorf and Wahba (11].) Boneva, Kendall and Stefanov (2] dis-
cuss a special case in one dimension. Schoenberqg and de Boor [16] discuss a
volume matching problem in two dimensions where the roughness measure has a tensor

product structure and o is a rectangle with the Qi's a rectangular subdivision.

Our interest in this problem was sparked by a paper of Tobler [18). He proposed

. R 2

to solve the volume matching problem by minimizing Jl(u) = ][ (ux
Q 1
subject to volume matching conditions, positivity constraints, and certain boundary

2
+ uxz)dxldx2

conditions, and suggested a numerical algorithm for doing this. Some of the results
here are alluded to in our comments to his paper (Dyn, Wahba and Wong [8)).

Our results show that the solution to problem I-4 and the special cases I-1
and I-2 satisfies a certain eliptic boundary value problem with Neumann boundary
conditions. Numerical implementation of these boundary value proilems can be
avoided if one is willing to modify the roughness criteria. Let X be a suitable

space of functions on R2 (to be defined), and define 3m on X Dby

2 i=0

0 i / 3™y 2
Jga(0) = { ) (i)\——v—jgrr dx, dx,
R 2

We consider

Problem I-m: Find u ¢ X to minimize Bm(u) subject to

f udx = s
ai

i U P PRA AR |

If u 1is the solution to this problem, we will have
J W) > I () >3
with inequalities holding in general. This approach of using 3n(“) as a rough-

ness criteria has been extensively used for estimating surfaces given evaluation

data by Duchon (6], (7], Meinguet ({13}, Paihua and Utreras [15] and wahba [19].
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Using these available results, we derive in Section 7 an explicit ex-
pression for the solution of Problem i-m. and a readily computable approximate
solution. The results generalize easily to d dimensions.

We now proceed to the problem of estimating g. Since the data zi are
only estimates of the b, we only want g to satisfy volume-matching conditions
approximately. As in the case of smoothing splines (see [5] and references therein)
we are led to

Problem II-m: Find g ¢ X to minimize

N
2
5 w, (2, - [ gix,y)dxdy)© + ) I,

i=1 Qi

with Jm(u) defined by (1.3). Here the (wi} should be equal to 1/variance 2

The parameter 1\ represents a tradeoff between the roughness of . g and the

i

infidelity of g to the data. The variance of zi is My which is, of course,

unknown. In practice, the w, would have to be chosen iteratively. One could

i

set w = 1/2i initially, since zi is an estimate of "i' The resulting esti-

mate of g is then used to get ("1) for a second estimate, etc.

In Section 5 we characterize the solution to problem II for Jm given by
(1.3) and for given Wyettt oW, In Section 6 we indicate how ) may be chosen
to approximately minimize the predictive mean square error. In Section 7 we give
an explicit representation for the sclution to Problem II-m with Jm replaced by
jn. (Problem II-m). More significantly, we give explicit formulae for approximate
solutions to Problem IT-m which are suitable for numerical computation. In this
context we also derive formulae for computing an optimal ) based on the results
of Section 6.

Hopefully, these results will provide the first step towards efficient

methods for converting aggregate data to density maps.




Smooth Surfaces On Bounded Domains Matching Integral Data.

Consider a bounded domain ! of Rd with T its boundary, and a bilinear

form

(2.1) Afu,u) = 2 ] aas(x)DuuDBv ;

!u!:ls'.m }:

aas(x) ¢ L () ;

d
where X = (xl‘toa'xd)' as (Ql.oon'ud)’ {Q‘ = 11'101, ui-non-neqative inteqet,
a 3“1 3ud
D = o T = (and similar notations for £). With this definition A(u,v)
1 d
Bxl axd

is continuous on Hm(ﬂ) x Hm(ﬂ) where Hm(ﬂ) is the Hilbert space

'@ = fu ] 0% e L@, Ja] <m, nul®, = ] #0fuid,
HT(R)  |k|<m L (q)

By assuming that

(2.2) i Bty sl Vol
]0]:!8?'“\ ‘q!-m

1

for all y = (Y1.°".yk). k = #{a| |af /2

s . », -
= m}, (A(u,u)]1 is a seminorm on H (1)

with a null space O - the space of all polynomials of total degree less than m,

which is of dimension M = ‘m0:-l).

In this section we prove the existence and uniqueness of the solution to

Problem I1-A:

For given 810" 8 find u ¢ nm(ﬂ) minimizing A(u,u) amonag all functions

in H'(0) satisfying the integral data

(2.3) /] ve =8

™
«“

{ : igl'o-o'N

where 01,---,0“ are N linearly independent functions in thn).

In particular we characterize the solution of Problem I-A as a solution of a

certain boundary value problem.




We ' ove two lemmas.

lemma 2.1: In the subspace HO of Hm(Q) given by

(2.4) Hy = {ul ue W (D), f p™ = 0, lal < m}

)
f

vA(u,u) 1is an equivalent norm to [llull "
H(Q)

Proof: By (2.1) there exists C1 > 0 such that

2
(2.5) Atuu) < llull s u e HH(R)
H' (D)

Iterating the Poincare inequality [14):

(2.6) fulcelt § [ o"w?+f w?), uven@
2 la[=1 @ Q

we obtain for any 0 < k < m

(2.7 ¥ (0*w? < cf e ) *w? + e 1) o®ul?), u e @ .

A -9 : L
laj=k 2 jaj=m 0 k<laj<m Q

Thus by (2.4) and (2.2)

n'n
O jw

3 Afu,u), u ¢ uo(n)

(2.8) Huu2m oo - R
H () {af=m

[ 0®w? <
f

let O = span(ql."'.q"). We assume that N > M and that the N linear
functionals in (2.3) are linearly independent over 0. Without loss of generality

we can assume that the matrix

M
(2.9) (&2 Ubmeili, 4m1

is of rank M. Therefore there exists a basis (&1.°'°.i"} of @ with the pro-

perty

wp——




6"), i,j = 1,°°°,M

In the subspace Hl of Hm(ﬂ) given by

Ho () = {u | ue i, [ up, = 0, i = N-Mel,cee,N)

'S
i

YAlu,u) is an equivalent norm to llull
m, .
H ()
Proof: For any u ¢ Hl(ﬂ) there exists q ¢ O such that U, = u-q ¢ HO(Q),

and therefore

u
et P 321 qs[‘“o°u-n+i

Since for any ¢ ¢ Lz(n)

o | b
(2.12) ;[\m; <ol , Mull
Q L () H (R)

we get in view of Lemma 2.1

M
™ < fu s Tuq PRIl flu_ 1
W™ () Py s iy T N m

B v o dieres
< Ca'A(“o'uo) Cyrélu,u)

This together with (2.5) completes the proof of the lemma.

Let u ¢ H'(Q) satisfy (2.3). Then

M
(2.13) )
i=1

Sn-mei 34 €

M
[u‘j - Sj - 2 sN-"#i [quoj - Bj' j - 1,00-'N-H ¢

f i=1

and A(u,u) = A(u,u). Therefore Problem I-A is equivalent to Problem (I-)"':
Find u ¢ Hy minimizing Alu,u) among all functions of H, satisfying

(2.14), or equivalently satisfying
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(2.15) [Gd, =s5., j=1,00,N"M
&l b
with
: “
2.16) By by - ¥ TPL Y {a;,} arbitrary

In particular it is possible by assumption (2.9) to choose (aij} such that

(2.17) [aby=0, 3 =1,000N-M, qe0

By Lemma 2.2 the linear functionals

(2.18) L) = [ uij. j o= 1,0e ,N-M

are bounded in H1 with respect to the norm (A(u,u)ll/z. Invoking the Riesz
representation theorem we conclude the existence of Ej < Hl' j = 1,°**,N-M

satisfying

2 A = :
(2.19) Atu,g) / ub . all ueH

9]
and due to (2.17)

(2.20) AlQ.Eg) = / qéj 0, Bl g0

Since él,-'-,en are linearly independent so are tl"..'CN—M' and the solution to
Problem (I-A)’' is known to be the unique function in the span of {Cl'...'EN-N)
satisfying (2.16), (see [9]). The solution to Problem I-A is related to this

solution according to (2.13). The following theorem summarizes the above findings:

Theorem 2.1: There exists a unique solution to Problem I-4. The solution is of

the form:
: “E" ; g
{2:22) u= ok ¥ 8 q
i=1 i | i=1 N-M+1 ‘i




<R
Ll

.
e
A 5

where 51.‘".5 determined by (2.19), and

are the unique functions in H

N-M 1

€)r""*eCy_m Aare the solution of the non-singular linear system

N-M M
2.22) ] cA(g,E) =5, =8 - § s . [qeé., 3=1,000,NM
LA s T 37T & e 2 %

An immediate consequence of Theorem 2.1, (2.19) and (2.20) is

Corollary 2.1: The solution u of Problem 1-4 is uniquely determined by the

variational characterization

N
(2.23) A = [ (] vev, verm
2 i=

and the matching conditions

(2.24) [ us, = s

1

i' ‘-10-.'0N

In (2.23) YyetoreY are constants, which in particular satisfy

N
f .
(2.25) 8 v, 4)a=0, qeQ
0 i=]
In case (] is a smooth domain the solution u of Problem I-4 can be
further characterized in terms of a boundary value problem. Since each Ci'

1 <1 < N-M, satisfies (2.19) and (2.20!, namely

Atw,g) = [up, for all weH (D
2

we conclude from Corollary 2-2 on pages 219-220 of Aubin's book (1] that Ei

is the unique solution in H to the boundary value problem:

1

(2.26) ACA -9 in Q

i ' .

(2.27) 6151 =0 for m<j<2ml on T .

In (2.26) A is the differential operator of order 2m given by

«10=
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&
e i
{B] B a
(2.28) Au = E (=1} ID (aqg(x)b u)
}ut,’;w}ﬂm i
ﬂ o and in (2.27) & = (S’m-l'...'ﬁm) is a differential operator of order > m
mapping
a m q I m 2
. (2.29) H(2,A) = {ul ue (WD, Aue LM}
4 :
i m m=j= =
‘ 3 into n H “ ('), such that the generalized Green Formula holds:
4 ¢ j=2m=1
" ¢ m;l BJ \
(2.30) Atu,v) = [ (Awv + § [ (8 w) | ——=v)
7 - 2m=-3-1 s | )
: 2 =0 an
! (é; is the operator of normal derivative to the boundary T).
The characterization (2.26), (2.27) of Ei £ “X together with Theorem 2.1
3 3 yields

Theorem 2.2: The solution to Problem I-4, for a smooth domain @, 1is uniquely

determined as the solution to the boundary value problem

{2.31) Au= ) ¥. ¢ in 0
L i
i=]
(2.32) ‘15 - m<3j<2ml on T

see Yy are

which satisfies the matching conditions (2.24). 1In (2.31) Vl' N

N constants satisfying (2.25).
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3. lLaplacian Histosplines - The Volume-Matching Surfaces.
In this section we specialize to the concrete problem of finding a smooth
Bl 2 2
surface u = u(xl.x,) having prescribed volumes over specified subdomains in R .

We characterize the volume matching surface as a function with the even order q

2 ~ \2]m
differential form Am > [3—3—) + (;;——)J of constant value in each of the sub-
1 2

domains. These surfaces are therefore strikingly analogous to even degree one- ;
dimensional splines, regarded as functions with a certain even order derivative
of constant value in each subinterval. Following a suggestion of Professor Iso |
Schoenberg we term these surfaces “"Laplacian Histosplines" in analogy to the uni-
variate Histosplines of Boneva, Kendall and Stefanov [2), which are the even degree
univariate splines solving the "area matching" problem.

We consider in details the following two problems: Let 2 be a smooth

N
3 bounded domain in Rz subdivided into N disjoint domains Rl."'.ﬂn. Q= U 91.
3 i=]
Problem I-1: Find u « Hl(ﬁ) minimizing
(3.1) [ (u.? + u ?)ax, ax |
SR - x ¢ R
114 l 2
among all functions in HI(Q) satisfying 3
(3.2) f u = gi' { = ],00 N "

Problem I-2: Find u ¢« Hle) minimizing

2 2 2
(3.3 ] ta + 2u + . )ax dx
a %1% xlxz X%,  REE-

among all functions in HZ(Q) satisfying (3.2).
From a practical point of view these two problems are the most interesting,

since computation of solutione of similar problems with higher order forms (2.1)

becomes too complicated, with the increased complexity of the operators A and &

in Theorem 2.2.




Using Theorem 2.2

.-

for the special setting of Problem I-1 together with the
classical Green Formula [3)

(3.4) i -f(Au)v+[-—v
- S
we obtain:

Theorem 3.1:

The solution to Problem I-1 is unigquely determined by the following
conditions:
1. in ﬂi
oy = ;21 g7t S

0 elsewhere

N
! vyJ 1=0
is1
i
du

To get a similar result for Problem I-2, we first derive a more general Green

Formula for the bilinear form corresponding to the seminorm (3.3)

By a repeated
use of (3.4) we get

2
(3.5) [ u v s = [ v - ] (—Au)v‘]v—--w
T N S “x '2 %% ‘2‘2 n
3u v 3u v
since on I Wu-Vv 3 I . 5t ot ' where
B

2
at
the last term in (3.5) becomes

is the tangential derivative to

(3.6)

u 3"y v
lr VE-'W - ]r -:

Comparing (3.5) and (3.6) with the generalized Green Formula (2.30)

, we conclude

13-




that for the seminorm (3.3), A and 4§ of Theorem 2.2 are:

2 2

2 3 3 3
(3'7, A 4 ' 6 - (63162)0 62 - —"_2' 63 - '(A + ——5) an
an 31

Thus by Theorem 2.2:
Theorem 3.2. The solution u to Problem I-2 is uniquely determined by the

following conditions:

A u = 2 Yi in 0
i=] 1

2 Yy f q=0, =1, X)X,

i i=] ﬂi

} 2- 2
2—% = 0, (jLE + 4) %3 w0 on T
an ar e

[ w=s, 1m0 .
a

Remark: It can be shown by Theorem 2.2 and repeated applications of the classical

Green formula that for the higher order roughness criteria

nf %

AT TS e A PN Wy e Y

! (3.8) 3 () = [ I( ax, dx,, m > 3
G Zmi \axi a—i) &
the solution to the volume matching problem satisfies
m,m .
(3.9) (-1)"au= § yvx, in @
i*a
i=1
with appropriate boundary conditions
(3.10) 63\:-0 on T m<j<aml .

!
|
{
|
{
§
d
|

{

e i a Bt e e TSy
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4. A Simple Example of an Explicit Laplacian Histospline.

S
Consider N subdomains in R

D
. i - ’ A < Vo < )' | = " Bt
(4.1) i {(x1 xZ)IRx-l X)X Ri i 1 N
N
with RO >0 and Q= U Q.. In the following we derive the explicit form of
i=1
the solution to the volume matching problem I-1.
By the radial symmetry of the problem, u = u(r) with r = /xioxg, and in
view of Theorem 3.1, =-8u =y, in @, i = 1,**+,N. Since (3]
1. & ;
Af(r) ~ dr[rf (r)]
- '3
(4.2) Umaea—=yr” ¢¢c logr+h, in 0., %w T seo
R i - § b

The coefficients Vx' cl. bi' i=1,+**,N satisfy the following conditions

implied by Theorem 3.1 and the continuity of 6 and g%:
- Y e
(4.3) o3 -0 m e . (Boundary Condition)
dr‘ 2 RN
reR
N
N 2 2 N
(4.4) 1 v (R-R) ,) =0 () vl 129
i=1 i=1 f
i
2
(4.5) - = (Y.~ )fi i = 1,+++,N-1 (Continuity of QQ,
: w e T Wl L S e "
o :
(4.6) bi - bi’l = (Vx-vi+l)1r-- tc‘-ci‘l)loq Ri' i =1,*«+,N-1 (Continuity of u)
2 2
¥ R R
L X i 1 i-1 1
(4.7) TeR“Riy) * ci(7;(1oq R, = 31 - (log R, _, 21)
R:'Ri-x e
+ bt 3 -5 i=1,***,N (Volume Matching) .
a} 8w




The total number of linear equations (4.3) - (4.7) is 3n, as is the total

number of unknown coefficients. If RO > 0 there is an additional boundary con-

dition to be satisfied

A Y, R

(4.8) du Qw24 t g p 50
dr| 2 R 0
.r-R 0

Claim: If RO > 0, (4.8) is linearly dependent on equations (4.3) - (4.5). If

R0 = 0 then (4.3) - (4.5) imply c1 = 0,

Proof: Summing (4.5) for i = 1,+*+,N-1 we get

N-1

C, ~ey ™ 1y, i™Yy

N

R2 N
_.1.._1.2
'3 15

i ) + % Y R2 -
i=] i

-
e
=
o
o
<
z
2

which in view of (4.4) and (4.3) can be written as

el < |

Nll-'
o ~
4

2 2
e, ~Cy" (YlRo YNRN) =

Therefore c1 - % leg, proving the claim.
By integrating rulr), one can transform this volume matching problem into
an interpolation problem. (Similar equivalence exists between area-matching

splines and interpolating splines in the one-dimensional case (16])). Thus defining

r
(4.9) Utr) = [ opulp)de , wulr) = %-U'(r)

o

we have to construct an "interpolating spline"” of the form:

2 4 2
(4.100 U(r) = A, + BT + c,r + D;r logr, Riy ST 2Ry, ie=], N
satisfying
2 y 4
(4.11) Utz) ¢ € (RO.RN) P U(Ri) - 2—' jzx .j ’ i = ),v%¢ N .




. 3 4
It is easy to check that the functions r2, S r2

Extended-Chebychev-System on any interval of the form
sidered as a function of is a Chebychev-spline.

ion of Chebychev splines see {10] Chapter 10).

log r

(O.RN). Thus

constitute an

(For the notion and construct-




5. Laplacian Histosplines for Inexact Data.
s In this section we consider the problem of finding a smooth function é
given inexact volume data. Similar analysis can be done in the more general
setting of Section 2.
Problem II-m: For a given set of data 2 ."',ZN find 6 € Hmtﬂ) mini-

1
mizing

N
2
(5.1) Powitfa-20%+2 (@
=1 %@,

where Jm(q) is defined in (3.8), @, Ql""'ﬂn are as .n Section 2 and

A, Wyetet,w, are fixed positive constants.

In the notation of Section 2 any g ¢ Hm(ﬂ) can be represented as

Bl +9,+q, where 9, € Q. g, ¢ spaﬁ((l."'.CN_") and 9, satisfies

(5.2) / 9y = 0, i=1,0e0,N

o

By (5.2) 93 3 “1 is orthogonal to El.---,tn_n with respect to the inner-
product in “1 corresponding to the norm JJm('). Therefore 9, does not

affect the first term in (5.1) while
Jm(gl * g2 . 93) = Jm(gz) . Jm(QJ’

and necessarily the solution to Problem II-m is of the form

. ¥ % N-M M %
{5.3) g=g,*g," 121 c‘ﬁi . izl dlqi .

Since for the volume data, 01."'.0N in Section 2 are of the form

‘1-xﬁ ’ i-l'ooo'u ¥
i

hence by (2.16), (2.17) and (2.26)

18-

’\‘
g

it AT e i




j ¥ i, ) = 1,00 ,N-M

j = N=-M+l,**¢ N

satisfying

N
% -y

,( E’t*l &Q.O' L= 1,00 ,M, iml,0°¢,N-M
J=N-M+1 Q,

i3
o 1

In view of (5.4), (5.5) and (2.27) the solution @ to Problem II-m, given by

(5.3), satisfies the boundary value problem:

N
(5.6) (-1)"a"g = § v in @

X
i1 1

§.g=0 on T m< 3 < 2m-l

3

N constants restricted by

N
5-. Ylf al-ov R w ],cee .M
.l 8

i=] i

In (5.7) the boundary operators 6m'.."62m-1 are as in the Remark in

Section 3.

The following theorem relates the values of the constants Yl.“‘.Y“ in

(5.6) to the "smoothed data", namely to the values

(5.9) z = [ @, i=1,000,n .
Pi

Theorem 5.1. The solution a of Problem II-m satisfies (5.6) with

U‘ &
(5-10) Yi - T(zi'zi)' i= 10"'.“ .




Proof: The coefficients in (5.3) satisfy the necessary conditions for minimizing
(5.1), namely the vanishing of the partial derivatives of (5.1) with respect to
Cye®**Co and dl,---,dM. In terms of the bilinear form Am(-,') correspond-

ing to Jm('), these conditions become:

N-M
'\' . - = 3 R -
(5.11) L lw, (2, zi)fp €5 + M_(E,,E)c;] =0, § = 1,00 ,NN ,
 § ‘i
N - -
(5.12) 5 "x(zi'zx’f q. =0, = 1,°%+,M
PeN-M+] R )

In deriving (5.11) we recalled that

(5.13) [ tj = 0, i = N-M#l,***,N, j=1,°°°,N-M

1
Let KX be the (N-M) x (N-M) matrix with entries

5. - P - L] = ’ - '.oo' - ¢
(5.14) o Ry AplE k) {:,Cj /ﬂ €0 i3 =1 N-M

1 3
let T be the (N-M) x M matrix with entries

o - f aj. i = 1""'"‘"‘ j - 1".""

i }, W= diag{w s}

W= diag{wl'--c' N-HQ]'.. -

w
N-M

- cee . - o "o r = LR ’
Cc (Cl' 'CN-H)' z (ulv .ZN_M). ! (zN‘"*l' oz") .

" - > L ] o \ = " LR > g

z (zl' va_")a ! el (zﬂ°ﬂ*1' :zN) .
With these notations (5.11) and (5.12) become
(5.15) KW(z-z) - \Kc = 0
(5.16) z-2z= -y'l'r'w(z-‘:) .

-20-
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Since X as defined in (5.14) is symmetric positive definite, (5.15) implies
(5.17) c = % wW(z-2)

while by (5.3), (5.4) and (5.6)

(5.18) o, = (-1)"a"g = v, in @, &= 1,000 ,N-N .

Therefore (5.10) holds for i = 1,+*,N-M, and (5.8) becomes

(5.19) (

1 -~
s ' = -! s e ' B - . = - -t -
) x (vl. ) e y T'W(z-2)

wN-M*i' 'YN-H

Comparing (5.19) with (5.16) we conclude that (5.10) holds for i = N=-M+l,°°*+,N
as well.
A direct consequence of Theorem 5.1, the pepresentation (5.3) of g and
{5.4) is:
Corollary 5.1: The solution of Problem II-m is of the form
N-M

M
- 1 - - -
(5.20) g5 L WL -8 + ] B .q
i=1 i=1
and satisfies the integro-differential equation

N
m, m~ 1 -

(5.21) (-1)78"g = + ) R [ @
i=1 i Q1

with boundary conditions

(5.22) 6,?;-0 m<3 <ol .
Equations (5.21), (5.22) indicate an alternative direct way for the computa-

tion of é. avoiding the computation of the functions {1.-0',6“_".

We conclude this section by deriving explicitly the relation between the
vector of given data 2 = (zl.--o,zN)' and the vector of smoothed data

‘- - -co. L
Z (21' -ZN) .

«2le
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From (5.20) we get
-~ 1 - -
z =7 KNE-2) + T2

and after substituting for i from (5.16)

(5.23) 2= Tz b TW T'W(Z) 41 KW(z-z) .
with

B= (I+ % P
(5.21) and (5.16) become
(5.24) z -%=B(z-Te), z -2 = -W T'WB(2-T2)

Combining the last two expressions we conclude that

(5.25) zZ=A(N)2
with

B -BT
(5.26) I - A(L) = E

\-wlr'wp W lrT'wer

22
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t 6. The problem of choosing ).

We give a procedure for choosing A in Problem II. 1In this section we suppose
(inaccurately!) that the {wi) in the definition of Problemrll are given positive
constants. In the problem presented in the introduction we want w, = 1/variance zi

= l/ui. Since the ui are being estimated, the wi can be chosen iteratively

by one of several obvious ad hoc procedures. In what follows, the w are assumed

. i
i
¥ fixed and given. It is likely that w, E 1 will give reasonable answers in most
§' cases when the u, are all of the same order of magnitude.
§
3 A good criteria for choosing ) is the minimization of R()) defined by
i
; a s
f (6.1) RA) =g ) 6.(u, -[ g,
F ' . kel | A
i =] Qi

i where E 1is expected value and &1 is the solution to Problem II and the 8i
are given positive weights. Since the u, are not known, we cannot minimize

R(}). However, an unbiased estimate R(}) of R()) is available by generalizing
an observation in Craven and wWahba [5]. Let A()) be the N * N matrix satis-

fying

ot
£ »

A(X)Z -

x5
89 »

[ g
QN

Such a matrix is given explicitly in (5.23), (5.24).
Then (6.1) becomes

1/2(

RO) = & 1oy (u - a2

where D, = diaq(el.---,o"}, and u = (ul.---.u“)'. Defining ¢ = (tl.°--.(')' by

;t* -23-




1/2

1/2(;.' - A(\)Z)II2 = E "De

E D) (I - AO)) W - A el

1/2

= ﬂDe

(1 - Mx)unz + Tr DGA(A)X A'())

where I = diagi{var 2 , var 22,-",var ZN} = diaq(ul,uz.'-'.un}.

1
Llet I = diaq(zl.°-~,zu). we claim that an unbiased estimate ﬁ(l) of R(})
is given by

172
8

1/2

1/2
8 (

e 5 A(M)II(I - A(M)') D

R = 1027%(1 - a2 - e D

1/2

AN I AN Dy

1/2
+ Tr De

In fact (6.2) simplifies to

1/2

N
Y2 - aonzi® + ] 6.z, - 2 Trace DyE(1 - AO))

(6.3) R()) = liD . 1%
=]

To assert our claim observe that

172

1/2( 2
8

Dy’ “(1 - a0z © = Mog’ (1 - Ao ul?

+ e o;’ztx - AOI(T - A(x)')o;’z

and

(6.5) S EnE
Substituting (6.4) into (6.2) and using (6.5) we obtain

E R()) = R(A) .

Thus it is reasonable to choose A by minimizing R(}).




7. Laplacian Histosplines for a Modified Smoothness Criteria.
Problems in coding a numerical algorithm for computing u and g related

to solving the Neumann boundary value problem in irregular domain can be avoided

RTINS

by modifying the smoothing criteria somewhat.
wWhether or not this modified smoothing criteria gives results equally pleasiny

as the smoothing criteria previously used, and whether the computing time required

ERC S SR

is comparable or not remain to be seen. However, the coding of an algorithm for

the modified criteria appears to be relatively straightforward, and is similar to

already existing codes for the case of point evaluation data [13), (15]), [19].

The results below are modest generalizations of results given by Duchon (6],

; [7], and later discussed by Meinguet [13] and Wahba [19).

L
E : We let d = 2, however the generalization to arbitrary d dimensions is

u

immediate from the known results whenever 2m-d > 0. Let X be a suitable

space of functions on R2 for which

T I T e e T ST

(7.1) I (uw = [f l)‘:' ™[ —2u 2
; S 2 =0 I \ax™Jax) ;
R

NPG——

is well defined and finite.
We modify problems I-m and II-m to the following:

problem I-m: Find u ¢ X to minimize 3-(\:) subject to

f u(xl.xz)dxldx2 “8, i= 1,2,°**,N .

"

Problem IT-m: Find g € X to minimize

N
2 -
121 vz, - [a q(xl.xz)dxldxzj + A J.(q) .

i

u X is the Beppo Levi space of all the Schwartz distributions for which all the
partial derivatives in the distributional sense of total order m are square in-
tegrable in R? [13].
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Usually, we will only be interested in the restriction of u or g to .

-

If u is the solution to problem I-m, clearly 2
Iplw) 2 Iafuw) 2 9 (u)

and equality will obtain iff u can be extended to all of R2 in such a way that

the extension ﬁ is in X and satisfies

? m a“& :

) | = 0 for (x'x)‘g
o5 3 3, m=3 178
=0 axlaxz

Generally this is not possible, but is always possible in the case of one-dimensional
histosplines. Moreover such an extension is also possible for domains with radial
symmetry, as in the example of Section 4, which is essentially a univariate problem

in r. 1Indeed by defining

u(r) = u(r) , 0 xR

u(r) = u(R) R <r

with u the solution in Section 4, we get
J(u) = J(u)
where both u and u match the same volume data.

The solution to problems I-m and IT-m can be given explicitly, we do this

later. However a representation of a computable approximate solution for m > 2

I R

can be obtained quickly from the known results, and we proceed to do this. Let

LR
X = (xl.xz). and let (tl):-l be a fine reqular mesh of points in {, tl = (xl.xz).

such that

[ uix,,x)dx dx, = a ] uit), ue W (o)
D st ane i L
Qi tlcﬂ‘

-26-




where 8, = ‘ﬁi‘/ni. \Qii being the area of Qi and n the number of mesh

points in ni. We now consider

Problem i-n—{tai: Find u ¢ X to minimize 3m(u) subject to

a, J ult)=s,, §=1,2,°,0
i , 2 i
tlcili

\\\ Problem Il-n-{t{?: Find g ¢« X to minimize

N

2 -
Jowite a0 ) eI KT (9,
i=] S i tleﬂi . -

Theorem 7.1: Suppose the N x M matrix T with

(7.2) T TR
jv i ceq. v k

k3

is of rank M. Then the solutions to problems i-m—(ti} and fI-m—(t!) are

unique and have representations:

N M
u(x) = { cjnj(x) + E a a (x)
ve]

i=1
(7.3)
i i
g, (x) = cn,(x) + d (x)
) A0 5.y vy
where
n,(x) = a I E ix—t )
i i m L
tleni
-1
00 = 8 |x| " 10glx|, 8 = (2™ si@-nn?)

x| = edexd

: fe

and {qv(x)): span the space of polynomials of total degree less than m. The

coefficients




“ee » = ene L
¢ = le,itrr,0) and d = (d,,°°*,d)

satisfy the following equations:

Problem i—m-(tl?
(7.4) Kc + Td = s
{1.:5) 'e= 0
where K 1is the N x N matrix with ij th entry
= . 1.3 = 1,°++,N
Kijy = a,a 1B (tt) J= 1,000,

43 tkcﬂi

1
ttcﬂj

1
and s = (91'...'8N) .

Problem I}-m‘(tl}

(7.6) X+ 2w he+md ez

(7.7 T'c = 0

where W = diaq(w1.°--,wn), and 2 = (zl,---.zn)'.

Proof: The special case n, = .i = v1 =1, i=1,2,***,N is just the problem of
interpolating or smoothing evaluation data, and in this case the result has been
given explicitly in (6], (7], (13], (19]. The extension to the case of general

n;. a; and v, is straightforward from these results and is omitted.

Observe that the solution to problem i-l-(tl} can be obtained by solving
(7.6) and (7.7) for the solution of Problem IT-m-{t }, with ) = 0 and Z replaced
by s. We now put equations (7.6) and (7.7) in a form suitable for the computation
of ¢, d and R(\). Let R be any N x (N-M) matrix satisfying R'T=0.
Since T'c = 0, there exists a unique N-M vector b, say, with ¢ = Rb. Left

multiplying (7.6) by R' and substitutina ¢ = Rb gives




(7.8) R'(K + AW H)Rb = R'Z .

We next assert that R'KR is strictly positive definite. To prove this we use
the following result [6]:

Suppose t -'°.tn do not fall on a straight line. Let f = (fl."°.£n)' be

1.
any non zero vector satisfying

n
121 £,q,(t) =0, v=l,2,M ,

n

then ) £ £.E (t -t
i, 4mi R hotss T,

satisfies T'r = 0, then r'Kr > 0. Let F be the n X N matrix with jkth

) > 0. We need to show that if r = (rl,---,ru)'

entry ak if tj € Qk and 0 otherwise, let E be the n * n matrix with jkth

entry Em(t -t. ), and let T be the n x M matrix with jvth entry g (t.).

G <
Then K = F'EF and T = F'T. Suppose T'r = 0, Then, if f = F'r, we have

3

T'€=1'r=0 and so O < £'Ef = r'F'EFr = r'Kr.
Incase A =0 or ) is a given positive constant, b 1is obtained from

(7.8), c=Rb and d is obtained from (7.6) as the solution of the system:

(7.9) (T'T)d = T(Z - (K + W Do) .

We proceed to the case where we choose ) according to Section 6. To com-
pute R(1) we first obtain an expreesion for A()). The appropriate definition

of A()) |is

a, . zn Q(tl’
g |

a, ] alt)
2 t. e :

l! 2

& Loetey
‘1‘“n

A(NZ =




Using the fact that

PO T O Y
i : Ballnt ij
ttcﬁi
one obtains from (7.3)
(7.10) A(M)Z = Kc + 7d

Combining (7.6) and (7.10) we get

(-A)Z= (K+ AW e+ Td- (Ke+ 1) =20 e .

Since by (7.8) and the definition of b

c = Rb = R(R'(K + W HR) Rz

we finally obtain

1

(7.11) I-A0) = W IRIR (XK + W HR R .

1

R can always be chosen so that R'W R = I"_".

giving

1

I - A = W IR + an " tr

where B = R'KR is a symmetric positive definite matrix. Now let UDBU'

the eigenvalue decomposition of B with D, = ding(b1.°°-.b }, then

1

(7.12) I-A() = An’lnn(uB + A1) "u'R' .

Recalling the expression (6.3) for R(1):

. 1/2 2 % ’
(7.13) RO = Ipg" “(1-A0N) 2 + ) 8.2, - 2 trace{D,I(I-A(\))

i=1

and substituting (7.12) we obtain

be




N-M R..
- i

v N
2 i j . 1
7. A) = SREE 1 . = e
L) st S WS YR P it il T TR o
i,3=1 1 il sl i=1 "1
= .o LI . )
where v (v1 'VN-M) U'R'2. ,
6 8
-1 -1 : 1 N
S ‘ = ‘ ' = ' ' —— 80 ® ——
H {hii' U'R'W "DW "RU = U'R dxaq{wz, 'wz)RU
1 N
2.8 2.0
L={2 .} =0U'RZIDW lRU = U'R' diag{ : l.-n, o N}RU
i3 8 w w
1 N
In the special case D& = W, the matrix H is I since R'H-IR = 1 and then
(7.14) simplifies to
2
i s N-R v N N-M L.,
(7,15) R(A) = 2° § —ntnc e ) W E -3 ) v
i=1 (bi4l) i=l i=]1 i
With the expression for ﬁ(k) in (7.14) (or (7.15)), repeated computations of

R(1) for different values of )
vector v and the diagonal of the matrix L are c
A minimizing R())

omputed.

are straightforward, once the matrix H the
Hence the value of

can be computed by standard minimization methods.

We remark here without proof that the arguments in [13] can be used here to

prove that the solutions to problems I-m and II-m have representations of the

form
) 1
c ¥, (x) + d g (x
juy 13 yup ¥V
where
(7.16) tj(x) =

fy

and the (qv) are as before. The vectors c¢ and

form (7.4) and (7.5) with Kij

and ij given by

)

[ B x,t)atae, , = (t,¢)

4 satisfy eaquations of the




.= | nixe)
ij m
Qi ﬂj

Ty ™ {}j 9,

Since Em is the fundamental solution of the iterated Laplacian (see [4] Section V,

[17) p. 47),

M. (x) =1, x € Q

3 - i

a™

j(x)-o.xtnj =

Therefore the solutions u and é to problems I-m and II-m satisfy Anﬁ = 0,

A-é = 0 outside 0 and AmG, Ana are constant on each Qi'
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ABSTRACT (continued)

smoothing splines in the univariate case, and a method for choosing the smoothing
parameter is presented.

For both cases of exact and inexact data modified roughness criteria, inde-
pendent of the region, are discussed, and results known for point-evaluation data .
are extended to the case of aggregated data.




